

REPORT OF PERFORMANCE

TIC 1615-11

OBJECT single-core power cable

TYPE 0,6/1 kV, 1x800 mm² CU/XLPE/TCUW/PVC

MANUFACTURER National Cables Industry-Sharjah, U.A.E.,

Sharjah, U.A.E.

CLIENT National Cables Industry-Sharjah, U.A.E.,

Sharjah, U.A.E.

TESTED BY KEMA HIGH-VOLTAGE LABORATORY

Arnhem, The Netherlands

DATES OF TESTS 29 September 2011 until 21 October 2011

TEST PROGRAMME Type tests in accordance with IEC 60502-1 (2004) including

Amendment 1 (2009).

SUMMARY AND CONCLUSION

The object passed the tests.

This Report of Performance applies only to the object tested. The responsibility for conformity of any object having the same designations with that tested rests with the Manufacturer.

This report consists of 28 pages in total.

© Copyright: Only integral reproduction of this report is permitted without written permission from KEMA. Electronic copies in e.g. PDF-format or scanned version of this report may be available and have the status "for information only". The sealed and bound version of the report is the only valid version.

12

.M. Verhoeven

Director Testing, Inspections & Certification The Netherlands

KEMA₹

IABLE	OF CONTENTS	2
1	Identification of the test object	
1.1	•	
1.1	Description of the test object	
1.2	List of documents	
2	General information	7
2.1	The tests were witnessed by	7
2.2	The tests were carried out by	7
2.3	Subcontracting	7
2.4	Purpose of the test	7
2.5	Measurement uncertainty	7
2.6	Applicable standards	7
3	Conductor	8
3.1	Measurement of the resistance of the conductor	8
3.2	Measurement of the number of wires of the conductor	8
4	Electrical type tests	g
4.1	Measurement of insulation resistance at ambient temperature	9
4.2	Measurement of insulation resistance at max. conductor temperature in normal operation	
4.3	Voltage test for 4 h	11
5	Non-electrical type tests	12
5.1	Measurement of thickness of insulation	12
5.2	Measurement of thickness of non-metallic sheaths	13
5.3	Tests for determining the mechanical properties of the insulation before and after ageing	14
5.4	Tests for determining the mechanical properties of non-metallic sheaths before and after	
	ageing	15
5.5	Additional ageing test on pieces of completed cables	16
5.6	Loss of mass test on PVC sheath of type ST ₂	17
5.7	Pressure test at high temperature on PVC non-metallic sheath	
5.8	Test on PVC insulation and sheaths and halogen free sheaths at low temperatures	
5.9	Test for resistance of PVC sheath to cracking (heat shock test)	
5.10	Hot set test for XLPE insulation	
5.11	Water absorption test on XLPE insulation	
5.12	Fire tests	
5.12.1	Flame spread test on single cables	23
5 13	Shrinkage test for XI PE insulation	24

-3- TIC 1615-11

6	Verificat	tion of cable construction	.25
APPEN	IDIX A	MEASUREMENT UNCERTAINTIES	26
APPEN	IDIX B	MANUFACTURER'S DRAWING(S)/DATA SHEET	27

1 IDENTIFICATION OF THE TEST OBJECT

1.1 Description of the test object

Manufacturer NATIONAL CABLES INDUSTRY-SHARJAH, U.A.E.

Type 0,6/1 kV, 1x800 mm² CU/XLPE/TCUW/PVC

Year of manufacture 2011

Test according to standard(s) IEC 60502-1

Rated voltage, U_0/U (U_m) 0,6/1 (1,2) kV

No. of cores 1

Marking on the cable KAHRAMAA QATAR, 600/1000 VOLTS 1X800 MM2

CU/XLPE/TCUW/PVC, IEC 60502, NATIONAL

CABLES INDUSTRY, UAE, 2011

Conductor

material Copper
 cross-section 800 mm²
 approx. diameter/dimensions 33,7 mm

- type/shape of conductor round compacted

- maximum conductor temperature 90 °C

in normal operation

<u>Insulation</u>

materialnominal thickness2,6 mm

material designationmaterial supplierknown in KEMA's fileknown in KEMA's file

- core identification Black

Inner covering

type extrudedmaterial PVCnominal thickness 1,4 mm

- material supplier known in KEMA's file

-5- TIC 1615-11

Metallic armour

- material Tinned Copper Wires

nominal diameter / dimensions
 cross-sectional area
 48 x 2,5 mm
 235,6 mm²

- material supplier known in KEMA's file

Oversheath

- material PVC, type ST₂

- nominal thickness 2,5 mm

- outer diameter of cable approx. 53 mm

- material supplier known in KEMA's file

- colour back

<u>Fire retardant</u> Yes, as per (IEC 60332-1)

Manufacturing details (of cable sent to KEMA for testing)

location of manufacturingfactory identification of extrusion lineNEXTROM

factory identification of extrusion line
 manufacturer of the extrusion line
 NEXTROM

- identification of the production batch # 319084; identification no. 50738527

- manufacturing length (where cable sample for testing has been taken from)

-6- TIC 1615-11

1.2 List of documents

The manufacturer has guaranteed that the object submitted for tests has been manufactured in accordance with the following document.

KEMA has verified that this document adequately represents the object tested.

The following document is included in this report:

drawing no./ document no.	revision	date	title
0102Q26123R1	0	01.08.2011	cable drawing 1x800 mm ² CU/XLPE/TCUW/PVC

2 GENERAL INFORMATION

2.1 The tests were witnessed by

The tests were not witnessed.

2.2 The tests were carried out by

Name Company

Mr B. Vos DEKRA Certification B.V.,

Arnhem, the Netherlands

2.3 Subcontracting

All tests were subcontracted to DEKRA Certification B.V.

2.4 Purpose of the test

Purpose of the test was to verify whether the material complies with the specified requirements.

2.5 Measurement uncertainty

A table with measurement uncertainties is enclosed in appendix A. Unless otherwise indicated in the report, the measurement uncertainties of the results presented are as indicated in this table.

2.6 Applicable standards

When reference is made to a standard and the date of issue is not stated, this applies to the latest issue, including amendments, which have been officially published prior to the date of the tests.

-8- TIC 1615-11

3 CONDUCTOR

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 5

Test date 29 September 2011

3.1 Measurement of the resistance of the conductor

item	unit	requirement	measured/determined
- resistance	Ω/km	≤ 0,0221	0,0221

Result

The object passed the test.

3.2 Measurement of the number of wires of the conductor

item	unit	requirement	measured/determined
- number of wires	-	≥ 53	61

Result

4 ELECTRICAL TYPE TESTS

4.1 Measurement of insulation resistance at ambient temperature

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 17.1

Test date 4 October 2011

item	unit	requirement	measured/determined
volume resistivity, ρ			
at 20 °C	$\Omega.cm$	_	9 x10 ¹⁶
insulation resistance constant, K _i			
at 20 °C	MΩ.km	_	318503

Result

The test results are for information only.

4.2 Measurement of insulation resistance at max. conductor temperature in normal operation

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 17.2

Test date 6 October 2011

item	unit	requirement	measured/determined
volume resistivity, ρ			
at 90 °C	Ω .cm	≥ 10 ¹²	1,2 x 10 ¹⁶
insulation resistance constant, K _i			
at 90 °C	MΩ.km	≥ 3,67	45439

Result

-11- TIC 1615-11

4.3 Voltage test for 4 h

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 17.3

Test date 29 September 2011

Environmental conditions

Temperature 20 ± 2 °C

applied voltage	frequency	duration	measured/determined
(kV)	(Hz)	(h)	
2,4	50	4	no breakdown

Requirement

No breakdown of the insulation shall occur.

Result

5 NON-ELECTRICAL TYPE TESTS

5.1 Measurement of thickness of insulation

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.1

Test date 5 October 2011

insulation thickness	unit	requirement	specified	measured/determined
- nominal	mm	≥ 2,6	2,6	-
- average	mm	-	-	3,3
- minimum (t _m)	mm	≥ 2,24	-	3,11

Result

Standard and date

KEMA≼

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.2

Test date 5 October 2011

Oversheath

thickness	unit	requirement	specified	measured/determined
- nominal	mm	≥ 1,4	2,5	-
- average	mm	-	-	3,2
- minimum (t _{min})	mm	≥ 1,8	1,8	2,96

Inner sheath

thickness	unit	requirement	specified	measured/determined
- nominal	mm	-	1,4	-
- average	mm	-	-	1,7
- minimum (t _{min})	mm	-	0,92	1,55

Result

5.3 Tests for determining the mechanical properties of the insulation before and after ageing

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.3
Test period 5 October 2011 until 13 October 2011

Characteristic test data

Temperature during ageing 135 ± 3 °C Duration 7 days

item	unit	requirement	measured/determined
without ageing			
- tensile strength	N/mm²	≥ 12,5	26,4
- elongation	%	≥ 200	624
after ageing			
- tensile strength	N/mm²	-	27,4
 variation with samples without ageing 	%	± 25 max.	4
- elongation	%	-	598
 variation with samples without ageing 	%	± 25 max.	-4

Result

5.4 Tests for determining the mechanical properties of non-metallic sheaths before and after ageing

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.4
Test period 5 October 2011 until 13 October 2011

Characteristic test data (oversheath)

Temperature during ageing 100 ± 2 °C Duration 7 days

Oversheath

item	unit	requirement	measured/determined
without ageing			
- tensile strength	N/mm²	≥ 12,5	19,2
- elongation	%	≥ 150	222
after ageing			
- tensile strength	N/mm²	≥ 12,5	18,3
- variation with samples without ageing	%	± 25 max.	-5
- elongation	%	≥ 150	213
- variation with samples without ageing	%	± 25 max.	-4

Result

5.5 Additional ageing test on pieces of completed cables

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.5

Test period 5 October 2011 until 13 October 2011

Characteristic test data

Temperature during ageing 100 ± 2 °C Duration 7 days

Insulation

item	unit	requirement	measured/determined
- tensile strength	N/mm²	-	25,2
- variation with samples without ageing	%	± 25 max.	-5
- elongation	%	-	606
- variation with samples without ageing	%	± 25 max.	-3

Oversheath

item	unit	requirement	measured/determined
- tensile strength	N/mm²	-	18,6
- variation with samples without ageing	%	± 25 max.	-3
- elongation	%	-	216
- variation with samples without ageing	%	± 25 max.	-3

Result

5.6 Loss of mass test on PVC sheath of type ST₂

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.6

Test period 4 October 2011 until 13 October 2011

Characteristic test data

Temperature during ageing 100 ± 2 °C Duration 7 days

Oversheath

item	unit	requirement	measured/determined
- loss of mass	mg/cm ²	≤ 1,5	0,3

Result

5.7 Pressure test at high temperature on PVC non-metallic sheath

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.7

Test date 7 October 2011

Characteristic test data

Temperature during ageing 90 ± 2 °C Duration 6 h Load 18.8 N

Oversheath

item	unit	requirement	measured/determined
- depth of indentation	%	≤ 50	27

Result

5.8 Test on PVC insulation and sheaths and halogen free sheaths at low temperatures

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.8

Test date 27 September 2011

Characteristic test data

Temperature -15 ± 2 °C Mass of hammer 1250 g

Oversheath

item	unit	requirement	measured/determined
- cold elongation	%	≥ 20	130
- cold impact test	-	no cracks	no cracks

Result

5.9 Test for resistance of PVC sheath to cracking (heat shock test)

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.9

Test date 7 October 2011

Characteristic test data (oversheath)

Temperature 150 ± 3 °C Duration 1 h Diameter of mandrel 8 mm

Number of turns 4

Oversheath

item	unit	requirement	measured/determined
- soundness	-	no cracks	no cracks

Result

-21- TIC 1615-11

5.10 Hot set test for XLPE insulation

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.11

Test date 7 October 2011

Characteristic test data

Temperature 200 ± 3 °C Time under load 15 min Mechanical stress 20 N/cm²

item	unit	requirement	measured/determined
- elongation under load	%	≤ 175	95
- permanent elongation	%	≤ 15	10

Result

Standard and date

KEMA₹

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.13
Test period 22 September 2011 until 11 October 2011

Characteristic test data

Temperature 85 ± 2 °C Duration 14 days

item	unit	requirement	measured/determined
- variation of mass	mg/cm ²	≤ 1	0,1

Result

-23- TIC 1615-11

5.12 Fire tests

5.12.1 Flame spread test on single cables

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.14.1 and IEC 60332-1

Test date 21 October 2011

Characteristic test data

Duration 240 s

item	unit	requirement	measured/determined
- length free of charring	mm	> 50	360
- downward limit charred surface	mm	< 540	500

Result

5.13 Shrinkage test for XLPE insulation

Standard and date

Standard IEC 60502-1 (2004) +A1 (2009), clause 18.16

Test date 26 September 2011

Characteristic test data

Temperature 130 ± 3 °C Duration 1 h

item	unit	requirement	measured/determined
- shrinkage	%	≤ 4	2

Result

6 VERIFICATION OF CABLE CONSTRUCTION

Verification of cable construction was carried out in accordance with clauses 5-13 of IEC 60502-1. The results are presented below.

	observed/determined
construction	 round compacted copper conductor construction: 1-6-12-18-24 wires Ø 4,1 mm XLPE insulation inner sheath (extruded PVC) water blocking tape armour of tinned copper wires; 50 wires Ø 2,5 mm water blocking tape oversheath (extruded PVC)
outer diameter of the cable, average	58 mm (approx.)
outer diameter of the cores, average	34 mm (approx.)

Result

No deviations from the specified requirements are found.

APPENDIX A MEASUREMENT UNCERTAINTIES

The measurement uncertainties in the results presented are as specified below unless otherwise indicated.

measurement	measurement uncertainty
tensile strenght test	1%
measurement of dimensions	5 μm
measurement loss of mass	0,11 mg : 8,0 gr
measurement of conductor resistance	0,03% of measured value
measurement at low temperature	0,1 °C
measurment in heatingcabinets	0,1 °C
voltage test	2.10 ⁻³ .U + 20V
	$2.10^{-3}.I + 0.2\%$

-27- TIC 1615-11

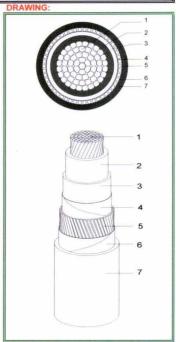
APPENDIX B MANUFACTURER'S DRAWING(S)/DATA SHEET

2 pages (including this page)

drawing no./	revision	date	title
document no.			
0102Q26123R1	0	01.08.2011	cable drawing 1x800 mm ² CU/XLPE/TCUW/PVC

-28-TIC 1615-11

> Drawing No.: 0102Q26123R1 Rev. 0 Dated: 01.08.2011


DEPARTMENT

ة الكابلات الود NATIONAL CABLES INDUSTRY NO

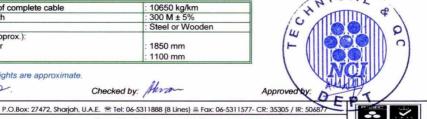
CABLE DRAWING

Cable size	: 1x800 MM²	Rated Voltage	: 0.6/1 (1.2) kV	Cable code:	0102Q26123R1
Cable Type	: CU/XLPE/TCUW/PVC	Ref. Standards	: IEC 60502-1 & I	KAHRAMAA Spec	no: ED-03-040
12.0			: Version#5 Rev-	-0/2010	

S.NO	DESCRIPTION	UNIT	OFFER DETAILS
1	CONDUCTOR:	1	Ì
	Material		Copper
	Form of stranding		Round compacted
	Approximate diameter	mm	34.2
	D.C. Resistance at 20°C	Ω/km	0.0221
2	INSULATION:		
	Material		Extruded XLPE
	Nominal thickness	mm	2.6
	Approximate diameter	mm	39.4
	Colors		Red or Black
3	INNER SHEATH:		
	Material		Extruded PVC
	Nominal thickness	mm	1.4
	Approximate diameter	mm	42.2
4	WATER BARRIER TAPES		Non conductive water
	Material		swellable tape
	Nominal thickness	mm	0.15
	Approximate diameter	mm	42.6
5	ARMOUR:		
	Material		Tinned copper wires
	Wire diameter	mm	2.5
	Approximate diameter	mm	47.6
6	WATER BARRIER TAPES		Non conductive water
	Material		swellable tape
	Nominal thickness	mm	0.15
	Approximate diameter	mm	48
7	OUTER SHEATH:		12-11 E
	Material		Extruded PVC
	Nominal thickness	mm	2.5
	Approximate overall diameter	mm	53.0
	Color		Black

Note: Water barrier tapes shall be applied under and over armour to prevent movement of water in transverse and longitudinal direction

CABLE MARKING


Embossing on the outer sheath in max 50 cm spacing in one line:

KAHRAMAA QATAR, 600/1000 VOLTS, 1x800MM², CU/XLPE/TCUW/PVC, IEC 60502

NATIONAL CABLES INDUSTRY, U.A.E., 2011

PACKAGING:

Approximate weight of complete cable	: 10650 kg/km
Nominal cutting length	: 300 M ± 5%
Drum type	: Steel or Wooden
Drum dimensions (Approx.):	
Outer diameter	: 1850 mm
Outer width	: 1100 mm

All diameters and weights are approximate.

SHARJAH ECONOMIC EXCELLENCE AWARD 2008

Prepared by:

e-mail: n_c_i@emirates.net.ae website: www.nci.ae

Checked by: Alexan

FORM # TE01/F06 Rev. 02